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Abstract. The behaviour of electronic states of one-dimensional correlated disordered systems
which are modelled by a tight binding Hamiltonian is studied analytically using the invariant
measure method. The approach of Bovier is generalized to include the possibility of different
site energies and nearest neighbour hopping integrals inside the correlated sites or the cluster.
The process is further elaborated by applying to the symmetric random trimer model which
contains in it many hitherto known models of this category. An alternative mathematical
definition of the exceptional energy (ES ) from the invariant measure density, along with physical
arguments substantiating it, is presented. Furthermore, the procedure for obtaining exceptional
energies is outlined and applied to the symmetric random trimer model to derive conditions for
obtaining doubly degenerate exceptional energies. The Lyapunov exponent (γ (E)) or the inverse
localization length of states around the exceptional energy is found to vary as∼(E − ES)2n in
the leading order.n denotes the degeneracy of the exceptional energy. The density of states
at the exceptional energies are calculated. We further propose that one-dimensional correlated
disordered systems can be mapped to a Lloyd model in which the width of the distribution of
site energies is determined by the reflection coefficient of the cluster embedded in the lattice of
the other constituent. The importance of our results is discussed.

1. Introduction

One of the well established results in condensed matter physics is that all electronic
eigenstates of a disordered one-dimensional system are exponentially localized irrespective
of the strength of the disorder. The early work of Anderson [1] on uncorrelated site diagonal
disorder in the tight binding model (TBM) and of Mott and Twose [2] form the basis of
this result. Of course, the results of Anderson and of Mott and Twose, cannot be rigorously
valid in one-dimensional systems in which the disorder is correlated. For example, in
the context of a TBM it has been shown that correlated off-diagonal disorder [3] cannot
localize the state at the band centre. Another example in this category is the model proposed
by Dunlap, Kundu and Phillips (DKP) [4]. The best known example in the context of a
TBH, however, is the random dimer model (RDM) [5]. This is basically the offspring of the
original DKP model. The generalization of the RDM requires the extension of the correlation
beyond the nearest neighbour site and the introduction of different nearest neighbour hopping
elements among the correlated sites or simply the cluster. Two good but simpler examples
in this generalized category are the repulsive binary alloy (RBA) [6] and the symmetric
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random trimer model (SRTM) [7]. The SRTM, which is the further generalization of the
RBA, yields two exceptional energies. The exceptional energy is the energy at which the
reflection coefficient of the cluster embedded in the lattice of the other constituent vanishes.
We further note that the number of exceptional energies for a trimer embedded in a one-
dimensional lattice of another element cannot exceed two. Another interesting as well as
important feature of the SRTM is that the positions of these exceptional energies can be
tuned by changing either the hopping element or the site energies of the cluster, and in the
limit these two energies can merge. This has actually been shown by Giri, Datta and Kundu
(GDK) [7] by conventional analysis of the reflection coefficient and by appropriate numerical
simulations. Salient features of the SRTM can be verified by fabricating appropriate layered
heterojunctions and also by coupling quantum dots [8]. Another potential area of application
of this model is the field of organic conducting polymers [9].

The most commonly used method for studying the electronic properties of one-
dimensional correlated systems is to analyse the reflection coefficient of the cluster in the
neighbourhood of exceptional energies. Since the system behaves like a weakly disordered
system in the neighbourhood of these energies, a very good estimation, albeit not rigorous,
of the Lyapunov exponent (inverse localization length) in these neighbourhoods can be
obtained from the reflection coefficient. On the other hand an estimation of the density of
states (DOS) at an exceptional energy can in principle be obtained from the phase of the
transmission coefficient of a single cluster through the Thouless formula [10]. To the best
of our knowledge no such effort has been made in this direction. Hence, the DOS and the
mean square displacement of the particle are calculated numerically [11] to establish the
presence of nonscattered states around these energies.

Another way of looking at this state of affairs is the calculation of the Lyapunov exponent
and the integrated density of states (IDOS) of the system from its invariant measure.
In an attempt toward understanding the behaviour of the IDOS of the one-dimensional
Anderson model in the weak disorder limit, Bovier and Klein [12, 13] developed a scheme
for a perturbation expansion of the invariant measure of the model. From the modified
perturbative expansion of the invariant measure, Bovier and Klein showed that at all energies
E0 = 2 cosαπ with α rational, the IDOS of the Anderson model in the weak disordered
limit has singularities. This was the extension of the results obtained previously by Kappus
and Wegner [14] and Derrida and Gardner [15]. Bovier and Klein [12] further showed that
for irrational α, their technique gives unique invariant measure with finite coefficients to
all orders of perturbation. This modified expansion has also proved to be a true asymptotic
expansion of the invariant measure [16]. This scheme was later applied by Bovier [17] to
develop the perturbation series expansion of the invariant measure around the exceptional
energies of the RDM. This enabled him to show that the Lyapunov exponent vanishes asε2

in energy (ε) in the neighbourhood of the exceptional energies. Furthermore, the IDOS is
found to vary asε within this energy width. This is basically the first rigorous calculation
on the RDM confirming the results of [5].

The fundamental characteristic of the cluster correlated disordered systems is the
presence of exceptional energies where disorder systems purportedly behave like perfect
systems. However, for these systems to play an important role in the transport properties of
the materials, there must be a finite DOS at these energies. Hence, to fully characterize these
systems, we need rigorous analytical calculations of the Lyapunov exponent around these
energies and DOS at these energies. To the best of our knowledge, for these systems, the
invariant measure technique is the only technique that can yield the DOS analytically without
invoking any approximation. This is primarily the motive to apply this technique to the
SRTM which encompasses many hitherto known examples. For this purpose, we generalize
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the approach of Bovier [17] to include the possibility of different site energies and nearest
neighbour hopping elements in the cluster. We also give here an alternative mathematical
definition of the exceptional energy from the invariant measure and derive from it, in the
case of the SRTM, an algebraic equation in energy involving relevant parameters of the
system. We further show that the equation gives the correct prediction of the possibility of
tuning of exceptional energies yielding in the limit a degenerate exceptional energy as noted
by GDK [7]. Finally we propose a mapping of these systems to an effective Lloyd model.
Such a mapping will be useful in the study of the transport properties of these systems.

The organization of the paper is as follows. In the following section we generalize
the approach of Bovier. We then develop equations for the invariant measure density,
the Lyapunov exponent and the IDOS. In section 4 we discuss the method for obtaining
exceptional energies. Section 5 is devoted to the perturbative calculation of the invariant
measure density for the SRTM. In sections 6 and 7 we calculate the leading order behaviour
of the Lyapunov exponent and the DOS at exceptional energies respectively. In section 8
we deal with the mapping of the aspect. We conclude the paper by highlighting the major
contributions of the paper.

2. Formalism

We study the Hamiltonian

H =
∑

n

εna
†
nan +

∑
n

Vn+1,n(a
†
n+1an + a†

nan+1) (1)

on l2(Z) wherean (a
†
n) destroys (creates) a particle at thenth site. Vn,n+1 is the tunnelling

matrix connecting thenth site to the(n+1)th site. {Vn+1,n} are taken to be real and positive,
although this constraint is not necessary.

The eigenvalue equation [18] associated withH is

εnCn + Vn+1,nCn+1 + Vn,n−1Cn−1 = ECn. (2)

We introducezn = Vn,n−1Cn

Cn−1
∈ Ṙ with Ṙ denoting the compactified real lineR ∪ {∞}. The

recursion relation forzn is then

zn+1 = E − εn − V 2
n,n−1

zn

= ξE,εnVn,n−1(zn). (3)

We further note in this connection that the eigenvalue equation for a one-dimensional array
of masses{mi} coupled to nearest neighbours by identical harmonic springs is

(2 − mi�
2)ui = ui−1 + ui+1 (4)

whereui is the displacement of theith mass,mi in the vibration with frequency�. All
spring constants are taken to be unity without any loss of generality. Now introducing a
variable,zn = un

(mn−1un−1)
∈ Ṙ, we obtain from (4)

zn+1 = −�2 + εn − V 2
n,n−1

zn

(5)

whereεn = 2
mn

and Vn,n−1 = (mnmn−1)
−1/2. Hence, the behaviour of a one-dimensional

array of masses coupled by harmonic springs is mathematically equivalent to the one-
dimensional quantum motion of a particle in a TBM [19, 20]. The Lyapunov exponent,
γ (E) and the IDOS,N(E) are related to the large-n behaviour ofzn. If we define

γ̃ (E) = lim
N→∞

1

N

N∑
n=1

ln
zn

Vn,n−1
(6)
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then

γ (E) = Reγ̃ (E) (7)

and

N(E) = 1

π
Im γ̃ (E). (8)

To understand the origin of equation (8) we consider a chain ofN sites with fixed
boundary conditions at both ends. In other words we setC−1 = CN = 0. To keep the
argument simple, we assume that{Vn,n−1}, n ∈ Z are real. From equation (3) we get
z1 = E − ε1, a real quantity. So, none of the{zn} can be truly complex. However,{ Zn

Vn,n−1
},

n ∈ Z can be negative real numbers which can be thought of as complex numbers with the
minimum phase,π . So the right-hand side of equation (8) picks up a contribution whenever

zn

Vn,n−1
= Cn

Cn−1
is negative.

Consider now the case whenCn = 0 for n 6 N . From equation (3) we obtain

zn−1 = V 2
n−1,n−2

E − εn−1
= E − εn−2 − V 2

n−2,n−3

zn−2
. (9)

Values ofE for which this equation (9) is satisfied are the eigenvalues of the system. When
n = N , we obtain eigenvalues of the system under study. Let us assume thatEl is the
lth eigenvalue of the system in ascending order. So, the eigenvector belonging toEl has
(l − 1) nodes. This in turn implies that zn

Vn,n−1
will also pick up (l − 1) negative numbers

giving Im 1
N

∑N
n=1

zn(El)

Vn,n−1
= l−1

N
. On the other hand, the number of states up toE = El , i.e.

IDOS (El) is l. So, in the limitN → ∞, equation (8) yields the IDOS (El). To understand
further the behaviour of equation (8) forEl < E < El+1, we note thatEl(m) > El(N) if
m < N . For E in this limit equation (9) will be satisfied for somem such thatl 6 m < N

and thelth eigenvalue of the reduced system will be obtained. Hence, the number of modes
and consequently the number of negative values of (Zn

Vn,n−1
) will be preserved. We further

note that whenE = El + ε andε → 0, m will be close toN . WhenE = El+1 − ε, m will
be close tol and it will swing back toN for E = El+1. For further discussion on this see
[21].

The disorder in the Anderson model can arise from the disorder in diagonal elements
(εn) of H , from the disorder in off-diagonal elements,Vn,n+1, n ∈ Z of H or from both. In
all these cases equation (3) defines a Markov chain in which states are characterized by the
random variablezn, n ∈ Z. WhenVn,n+1 = V , n ∈ Z and {εn} are 2D random variables,
this Markov chain consists of persistent non-null states [22]. In other words, the chain is
ergodic. Frustenberg’s theorem [23] then asserts thatεn 6= ε̃, ε̃ = a constant,n ∈ Z, and
there is a unique invariant measure dνE(z) on Ṙ. This measure satisfies∫

Ṙ

dνE(z) f (z) = E

∫
Ṙ

dνE(z) f

(
E − ε − 1

z

)
(10)

for all bounded measurable functions,f . Here, E denotes the expectation with respect
to the probability distribution ofε. Furthermore, this measure is actually continuous and
hence is supported byR. So, the measure dνE(z) has a density, i.e. dνE(z) = φE(z) dz,
whereφE(z) defines the density atz ∈ R. Similarly, if εn = ε̃, n ∈ Z and{Vn,n+1} are 2D
random variables, the resulting Markov chain is also ergodic except atE = ε̃. Hence, in this
case also a unique invariant measure exists onṘ [13]. From these established results we
conclude that when both{εn} and {Vn,n+1} are 2D random variables, the resulting Markov
chain also consists of persistent non-null states. So, again a unique invariant measure will
exist onṘ.



A study of one-dimensional correlated disordered systems 5703

To apply these results to correlated disordered systems some modifications are needed.
In order to introduce the required modifications, we first describe the model. The model
considered here is a random binary mixture of two types of cluster. Each cluster contains
q > 2 elements. In the host cluster all elements are assumed to be the same while in the
guest cluster at least one element, if not all, should be distinct from the host element. All
site energies and nearest neighbour hopping integrals in the host cluster are set to zero and
unity, respectively, without any loss of generality. In the guest cluster site energies and
nearest neighbour hopping integrals are allowed to be different. We further assume that
the hopping integrals between the end sites of any two clusters are unity. So, diagonal
and off-diagonal elements in our model are not totally random. Instead each category is
required to satisfyq constraint relations:

ε̃qm+l−1 = [εl−1pqm + εq−l(1 − pqm)]eqm (11)

and

Ṽqm+l,qm+l−1 = 1 − [1 − (Vl,l−1pqm + Vq−1−l,q−l(1 − pqm))](1 − δq,l)eqm (12)

where 16 l 6 q and qm ∈ Z. The randomness in the model is, therefore, introduced
through two Rademacher variables,eqm, pqm ∈ {0, 1}. These variables by construction are
indeed 2D random variables. Rademacher variables,{pqm}, are introduced to take into
account the asymmetry of the guest cluster. Since a cluster can take only two possible
orientations in the lattice, two possible values of{pqm}, namely zero and unity, occur with
probability 1

2.
Since diagonal elements ofH here determine the strength of hopping to and from the

sites, the off-diagonal elements are not truly random. In essence this model is similar to
the Anderson model of uncorrelated site disorder. However, due to constraints on diagonal
and off-diagonal elements ofH , {Zn} as such do not form a Markov chain. To form the
required Markov chain we need to consider the clusters as unit cells. In other words, we
need to define a new random variable{Xn} such that

xn+1 = zq(m+1)

=
q∏

l=1

ξE,εq(m+1)−l ,Ṽq(m+1)−l,q(m+1)−(l+1)
(xn)

= PE,q(xn) (13)

We note that in the product of the operators in equation (13), the operator with the
lower value of l comes to the left. The Markov chain defined by the random variable,
{Xn}, is ergodic and according to Frustenberg’s theorem, a unique invariant measure
dνE(x) for this process will exist onṘ. Furthermore, this measure will have density,
i.e. dνE(x) = φE(x) dx, whenφE(x) ∈ L1

+(Ṙ, dx). In other wordsφE(x) belongs to the
class of non-negative Lebesgue integrable functions on the compactified real line.

3. Equations for the invariant measureφE(x), the Lyapunov exponent and the
integrated density of states

Before defining the equation for determiningφE(x), we define an operatorV0TE such that

(V0TEf )(x) = V 2
0

(E − x)2
f

(
V 2

0

E − x

)
. (14)
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This is the logical extension of the definition given by Bovier and Klein [12]. This
generalization is useful for the more general problem as can be seen in the forthcoming
discussion. Some important properties ofV0TE which will be used here are

(i) V0TE−v
V0TE−u = TE−vTE−u

V 2
0

(ii) V0T −1
E

d
dx

V0TE = 1
V 2

0

d
dx

x2, includingE = 0.

(iii) V0T0
V0T0 = I

(iv) V0TE = e−E d
dx

V0T0

(v) (V0T −1
E f )(x) = V 2

0
x2 f (E − V 2

0
x

).
If dνE(x) defines the invariant measure with respect to the process described by{Xn},

introducing equation (13) in equation (10) we obtain∫
Ṙ

dνE(x) f (x) = E

∫
Ṙ

dνE(x) f (PE,q(x)) (15)

for all bounded measurable functions. As usualE denotes the expectation with respect to
the probability distribution of{eqm} and{pqm}. In our model calculations we take

P(e) = 1
2δ(e) + 1

2δ(e − 1). (16)

Since dνE(x) = φE(x) dx, introducing this relation in equation (15) and making an
appropriate change of variables we obtain∫

Ṙ

φE(x) dx = E

∫
Ṙ

dx

q∏
l=1

Ṽ (q,l)TE−ε(q,l)φE(x) (17)

whereε(q, l) and Ṽ (q, l) are defined, respectively, by equations (11) and (12) by setting
pqm = p andeqm = e. Again in the product of these operators, the operator with the lower
value ofl comes to the left. Since equation (17) should hold good for any arbitrary bounded
measurable function,f , we obtain after averaging overe andp

φE(x) =
[

1
2T

q

E + 1
4

q∏
l=1

Vq−l,q−(l+1)TE−εq−l
+ 1

4

q∏
l=1

Vl−1,l TE−εl−1

]
φE(x). (18)

As an example we consider the SRTM. For this modelq = 3, ε2 = ε0 = v and ε1 = u.
The hopping between nearest neighbours in the guest cluster isV0. Since the cluster has a
inversion symmetry, two products are identical. So, we have

φE(x) = 1
2[T 3

E + V0TE−v
V0TE−uTE−v]φE(x)

= 1
2[T 3

E + TE−vT(E−u)/V 2
0
TE−v]φE(x). (19)

Before computing the complex Lyapunov exponent,γ̃ (E), we note that for disordered
systems, including the systems under study, due to the subadditive ergodic theorem [13, 24]
the limit in equation (6) exists and is independent of the realization of the disorder, for
almost all realizations. In other words,γ̃ (E) is self-averaging,

Eγ̃ (E) = γ̃ (E) (20)

whereE denotes the ensemble average. For effective calculation ofγ̃ (E), we first write

γ̃ (E) = lim
N→∞

γ̃N (E) (21)

whereN = qM is the total number of sites in the chain. Since

zqm+l =
l∏

k=1

ξE,ε(q,l−k),Ṽ (q,l−k)(zqm)

= PE,l(xn) (22)
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(see equation (13)), from equation (6) we obtain

γ̃N (E) = 1

qM

M∑
n=0

ln xn + 1

qM

M∑
n=0

q−1∑
l=1

ln PE,l(xn) − 1

qM

M∑
n=0

ln
q−1∏
l=0

Ṽqn+l,qn+l−1. (23)

The last term in equation (23) when averaged over all possible realizations of the sample
(over e andp) yields〈

1

qM

M∑
n=0

ln
q−1∏
l=0

Ṽqn+l,qn+l−1

〉
e,p

= 1

2q
ln

q−1∏
l=1

Vl−1,l . (24)

In the limit N → ∞ we apply the subadditive ergodic theorem to equation (23). This in
turn yields

γ̃ (E) = 1

q

∫
Ṙ

dνE(x) ln x + 1

q

q−1∑
l=1

E

∫
Ṙ

dνE(x) ln PE,l(x) − 1

2q
ln

q−1∏
l=1

Vl−1,l (25)

whereE denotes the expectation over{e} and {p}. Furthermore, introducing dνE(x) =
φE(x) dx and making an appropriate change of variables in the second integral of
equation (25), we obtain

γ̃ (E) = 1

q

∫
Ṙ

dx φE(x) ln x + 1

q

q−1∑
l=1

E

∫
Ṙ

dx ln x

l∏
m=0

Ṽ (q,l−m)TE−ε(q,l−m)φE(x)

− 1

2q
ln

q−1∏
l=1

Vl−1,l . (26)

We again point out that in the product of the operators, the operator with the lowest value
of m comes to the left. Furthermore, the product terminates atm = l. Equation (26) when
averaged overe andp yields

γ̃ (E) = 1

q

∫
Ṙ

dx φE(x) ln x + 1

2q

q−1∑
l=1

∫
Ṙ

q−1∑
l=1

dx ln xT l
EφE(x)

+ 1

4q

q−1∑
l=1

∫
Ṙ

dx ln x

l∏
m=1

Vl−m,l−m−1TE−εl−m
φE(x)

+ 1

4q

q−1∑
l=1

∫
Ṙ

dx ln x

l∏
m=1

Vq−1−l+m,q−l+mTE−εq−l+m−1φE(x)

− 1

2q
ln

q−1∏
l=1

Vl−1,l . (27)

Before applying equation (27) to the SRTM we first observe that∫
Ṙ

dx ln x V0TE−uTE−vφE(x) − ln V 2
0 =

∫
Ṙ

dx ln xT (E−u)

V 2
0

TE−vφE(x). (28)

Decomposing the complex Lyapunov exponentγ̃ (E) to real and imaginary parts, we obtain
for the IDOS,N(E) of the SRTM

N(E) = 1 − 1

π
Im γ̃ (E)

= 1 − 1
6

∫ 0−

−∞
dx [2 + TE + T 2

E + TE−v + T (E−u)

V 2
0

TE−v]φE(x). (29)
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Furthermore, for the Lyapunov exponentγ (E) we get

γ (E) = Reγ̃ (E) = 1
6

∫ ∞

−∞
dx ln y(x)[TE−vT (E−u)

V 2
0

TE−v − TE ]φE(x)

+ 1
6

∫ ∞

−∞
dx ln |x|[TE−v + T (E−u)

V 2
0

TE−v]φE(x). (30)

To obtain the first integral of equation (30) we definey(x) = √
x2 − Ex + 1 so that

|x| = y(x)/y(E − 1
x
). This in turn yields

ln |x| = ln y(x) − ln y

(
E − 1

x

)
(31)

and the integral decomposes into two integrals. In the second integral we replacex by
1/(E − x) so thaty(E − 1

x
) → y(x). Then we combine these integrals and introduce the

governing equation ofφE(x) (equation (19)) [17] for the final result. We further note that
the effect of the guest cluster onγ (E) appears in the second integral of equation (30). So
the transformation required for this integral will depend on the structure of the guest cluster.
For example, consider the example of the RBA. Here,v = 0 andu = (1 − V 2

0 )ω. For this
case we simply introduce equation (31) in equation (30) and after the needful amount of
algebra we obtain

γ (E) = 1
6

∫ ∞

−∞
dx ln y(x)(T (E−u)

V 2
0

− TE)TEφE(x). (32)

Equation (32) immediately yieldsγ (ω) = 0, confirming the result of [6]. As a second
example, we consideru = (1+V 2

0 )v in the SRTM. In this case the system has an exceptional
energy atE = v. To obtain the behaviour ofγ (E) in the neighbourhood ofv we transform
equation (30) to

γ (E) = 1
6

∫ ∞

−∞
dx ln y(x)[TE−vT (E−u)

V 2
0

TE−v − TE ]φE(x)

− 1
6

∫ ∞

−∞
dx ln y(x)[1 − TE ]T0[TE−v + T (E−u)

V 2
0

TE−v]φE(x). (33)

SinceT 2
0 = I and T0T−vT0 = T −1

v , from equation (33) we obtainγ (v) = 0 which is in
agreement with the result in [7]. WhenV0 = 1, this system also has another exceptional
energy atE = 2v. The calculation ofγ (E) for this case is facilitated by converting
equation (30) to

γ (E) = 1
6

∫ ∞

−∞
dx ln y(x)[TE−vTE−2vTE−v − TE ]φE(x)

+ 1
6

∫ ∞

−∞
dx ln |x|[TE−v − T0TE−2vTE−v]φE(x). (34)

We note that whenE = 2v, TE−vTE−2vTE−v = TvT0Tv = T2v and T0TE−2vTE−v = Tv.
So, γ (2v) = 0. This result has also been obtained in [7]. There is another important
motivation behind bringing lny(x) in the integrals. WhenE = 2 cosαπ , these integrals
can be easily carried out by mapping the compactified real line on the circumference of a
circle of circumferenceπ(S1) through the transformation

x = sin(θ + απ)

sinθ
(35)

whenx ∈ Ṙ andθ ∈ S1. As will be shown later, this transformation will also simplify the
perturbative calculation ofφE(x).
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4. Exceptional energy

For the purpose of clarity we discuss this aspect in reference to the SRTM. We have already
obtained the governing equation ofφE(x) for this model (equation (19)). We note that for
the RBA, atE = ω equation (19) reduces to

φω(x) = T 3
ωφω(x). (36)

For the SRTM withu = (1 + V 2
0 )v we obtain atE = v

φv(x) = 1
2[T 3

v + T −1
v ]φv(x) (37)

and forV0 = 1 at E = 2v, we get

φ2v(x) = 1
2[T 3

2v + TvT0Tv]φ2v(x)

= 1
2[T 2

2v + I]T2vφ2v(x). (38)

We note now thatTEf = f always has the normalized solution

fE(x) = 1

π

√
1 − E2/4

x2 − Ex + 1
(39)

and f (x) ∈ L1
+(Ṙ, dx) iff |E

2 | 6 1. For E = 2 cosαπ , if α is irrational, this solution is
unique. On the other hand forα = p/q with p andq prime integers, there exists infinitely
many others [7]. But this has no serious implication in our calculation.

It is important to note that the solutionφE(x) of equations (36)– (38) isfES
(x) when

ES = ω, v or 2v. Keeping this in mind, we define the exceptional energy as the energy
at whichφES

= fES
(x). This definition also has a physical origin. Consider two periodic

structures, one from the host cluster and the other from the guest cluster. The periodic
system from the guest cluster will in principle formq bands. Intersection of the DOS of
any one of these bands with the DOS of the periodic system from the host cluster determines
the exceptional energy (ES). Since the invariant measure density of the host system is given
by equation (39), the definition ensues. Then, to derive the equation for exceptional energies
of the SRTM we need to solve

fE(x) = TE−vT (E−u)

V 2
0

TE−vfE(x). (40)

It is relevant at this point to note that if

g(x) = 1

π

a

(x − b)2 + a2
(41)

thenTEg(x) is also another Lorentzian distribution centred atb1 with a half-widtha1, where

b1 + ia1 = E − 1

b + ia
. (42)

Hence, from equation (40) we obtain

S = E − v − 1
E−u

V 2
0

− 1
E−v− 1

S

(43)

whereS = E
2 + i

√
1 − E2/4. Equation (43) in turn yields a quadratic equation inS. The

required equation is obtained from either ReS = E
2 or from ImS =

√
1 − E2/4. Both will

yield identical equations. This procedure for the SRTM yields

v(ES − v)2 − [v(u − v) + (1 − V 2
0 )](ES − v) + [u − (1 + V 2

0 )v] = 0. (44)
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This equation has already been obtained in [7] by considering the reflection coefficient of
a single guest cluster embedded in the host lattice. Full analysis of this equation can also
be found there. We note that forv = 0 andu = (1 − V 2

0 )ω, from equation (44) we obtain
ES = ω. On the other hand if we takeu = (1 + V 2

0 )v, from equation (44) we obtain
Es1 = v and Es2 = (1 + V 2

0 )v + (1 − V 2
0 )/v. From these we can immediately see that

two exceptional energies in this case will merge atv if V 2
0 = 1

1−v2 . For V0 = 1, a similar

situation can be obtained by settingu = [v + 2[1−√
1−v2]

v
] and |v| 6 1. For this case, two

exceptional energies will coincide atES = (u + v)/2.
We further note that the procedure outlined here can be applied to complicated one-

dimensional chains like polyaniline, polythiophene, etc. We first need to apply the real space
renormalization procedure to these systems to obtain effective one-dimensional chains [9].
Then we can apply this procedure for finding exceptional energies in these systems.

When the guest cluster is asymmetricfE(x) has to satisfy two equations for two different
orientations of the cluster. This in turn will yield two equations forS, and these need to be
identical. This develops further constraints in the parameter space. Because of this extra
constraint on the equation forS, the probability of obtaining exceptional energies with an
asymmetric guest cluster, particularly if the cluster size is relatively large, is negligible. One
example of an asymmetric guest cluster having an exceptional energy has been worked out
in [7]. This shows the importance of symmetry in the guest cluster for obtaining exceptional
energies. This aspect has also been discussed in [6].

5. The perturbative calculation of the invariant measure density,φE(x), around the
exceptional energy,ES , for the SRTM

The procedure for the calculation is well documented in the literature. ForE = 2 cosαπ ,
the calculation is facilitated by the transformation given by equation (35). Hence, for the
invariant measure density we should have

φE(x) dx = hE(θ) dθ. (45)

We define an operatorJα such that

(JαφE)(θ) = φE(x)
dx

dθ
= hE(θ). (46)

We also define another operator,τα = JαTEJ−1
α , such that

(ταg)(θ) = g(θ − απ). (47)

Furthermore, ifg(x) = df (x)

dx
, we then have

(JαG)(θ) = g(x)
dx

dθ
= d

dθ

dθ

dx
(Jαf̂ )(θ) (48)

where(Jαf̂ )(θ) = f (x) dx
dθ

. It then follows that

Jα

d

dx
J−1

α = d

dθ

dθ

dx
= − d

dθ

sin2 θ

sinαπ
. (49)

We now consider the RBA and putE = ω + λ. It is transparent from equation (19)
that the perturbative calculation will be less cumbersome if we replaceω by (E − λ). This
yields

φE,ε(x) = 1
2[T 3

E + TETE−εTE ]φE,ε(x) (50)
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when ε = −λ(1 − V 2
0 )/V 2

0 . So the problem effectively reduces to the calculation of the
invariant measure density of a random binary mixture of two trimeric clusters. The central
energy of the guest cluster isε and all nearest neighbour hoppings are unity. We again
emphasize that we are seekingφE,ε(x) ∈ L1

+(Ṙ, dx) for |E| < 2. To obtain the perturbative
solution ofφE,ε(x) aroundε = 0, we write

φE,ε(x) =
∞∑

n=0

εn

n!
φ

(n)
E (x) (51)

andφ
(n)
E (x) satisfies

∫
Ṙ φ

(n)
E (x)dx = δn,0. We further note thatφ0

E(x) = 1
2π

√
4−E2

x2−Ex+1. So,

h0
E(θ) = φ0

E(x)
dx

dθ
= −sgn(απ)

π
(52)

when sgn(απ) is positive or negative depending on whetherα is positive or negative.
We know that according to Anderson’s theorem, all eigenstates of the system will be
exponentially localized for|ε| > 0. Furthermore, the Lyapunov exponent,γ (E), is the
inverse localization length of the eigenstate atE. So, physicallyγε(E) > 0 for E ∈ (−2, 2).
We also know thatγε(E) is a continuous function ofε particularly if |ε| � 1. So, we can
expandγεs

(E) in a Taylor series aroundε = 0 to obtain

γε(E) =
∞∑

n=0

εn

n!
γn(E). (53)

Sinceγ0(E) = 0, γ (E) reaches the minimum value atε = 0. So for |E| < 2, we must
haveγ1(E) = 0 and the leading order term in the Taylor expansion will be O(ε2) with
γ2(E) > 0. We also note in this context that when|E| = 2, althoughγ0(E) = 0, the
analytical continuation ofγ (E) for |E| > 2 will, however, yield negativeγ (E). This
naturally follows from the constraint onφE(x). So, in this caseγ1(E) will be non-zero. We
also see from equation (32) thatγm(E) has no contribution fromφ(m)

E (x). So to calculate the
leading order term ofγε(E), the knowledge ofφ(1)

E (x) will suffice. Similarly for the density
of states atES , we do not need more thanφ(1)

E (x) (see equation (29)). From equations (50)
and (51) for(Jαφ

(1)
E )(θ) = h

(1)
E (θ) we obtain

(I − τ 3
α )h

(1)
E (θ) = −1

2

d

dθ

sin2(θ − απ)

sinαπ
τ 3
αh0

E(θ) (54)

The procedure for solving this type of equation is to expandhn
E(θ) in the Fourier series in

(−π
2 , π

2 ) and then calculate the coefficients from the governing equation. This procedure
when applied to equation (54) yields

h
(1)
E (θ) = (−1)

4π

cos(2θ + απ)

| sinαπ | sin 3απ
. (55)

The second case that we consider isV0 = 1 andu = 2v. Here,v and 2v are exceptional
energies and we have already shown thatγ (ES) = 0 for ES = v and 2v (see equations (33)
and (34)). SinceES = E − λ, from equation (19) we get for|v| 6 1

φE(ES),λ(x) = 1
2[T 3

E + TE−61TE−62TE−61]φE(ES),λ(x) (56)

where61 = E−λ and62 = 2(E−λ) if ES = v. On the other hand, forES = 2v, we have
61 = E−λ

2 and62 = E−λ. So here the effective site energies of the guest cluster depend on
the energy under consideration. When viewed from a broader perspective, such a situation
does arise in the analysis of complex one-dimensional chains like polyaniline, polythiophene
etc. But the situation there is a bit more complex. In relation to the localization of
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eigenstates, arguments presented for the previous example also hold good here. States
which are delocalized forλ = 0 will be exponentially localized forλ 6= 0. Again, the
Lyapunov exponent,γλ(E), is expected to be O(λ2). So, to obtain the first order term in
the perturbative calculation ofφE(ES),λ(x), we write

(JαφE(ES),λ)(θ) = hE(ES),λ =
∞∑

n=0

λn

n!
h

(n)

E(ES)(θ). (57)

Then from equations (56) and (57) forES = v and 2v we get

(I − 2τα + τ 4
α )h

(1)

E(v)(θ) = E2

π | sinαπ | sin 2θ (58)

and

(2 − τ 3
α − τα)h

(1)

E(2v)(θ) = − E2 sin 2θ

4π | sinαπ | (59)

respectively. Since we plan to calculate only the IDOS for these cases, we solve for a new
function,fE(ES)(θ). For ES = v and 2v

fE(v)(x) = [I − TE − TE
2 − TE

3]φ(1)

E(v)(x) (60)

and

fE(2v)(x) = [2 + TE + TE
2]φ(1)

E(2v)(x). (61)

Now from the governing equation ofhE(ES)(θ) (i.e. equations (58) and (59)) we find that

(I − τα)f̂E(ES)(θ) = E2 sin 2θ

C(ES)π | sinαπ | (62)

whenC(S) = 1 and−4 for ES = v and 2v, respectively. This equation (62) can be solved
by the standard procedure and we obtain

fE(ES)(x) = (Jαf̂E(ES))(0) = E3

4C(ES) sin2 απ
φ0

E(x) − E3π

2C(ES)| sinαπ |φ
0
E

2
(x)

+ E2

2C(ES)

d

dx
φ0

E(x). (63)

Finally we note that whenu = (1+V 2
0 )v andV 2

0 (1−v2) = 1, two exceptional energies
merge atE = v (γ (v) = 0 (equation (33)). For this case the equation forh̃E(v),λ(θ)

(˜ denotes the merging of twoES ’s) is

(I − 2τα + τ 4
α )h̃

(1)

E(v)(θ) = 0. (64)

The solution for this equation is̃h(1)

E(v)(θ) = constant. Since∫ π/2

−π/2
h̃E(v),λ(θ) dθ =

∫ π/2

−π/2
h̃

(0)

E(v)(θ) dθ = 1 (65)

by construction, we need

h̃
(1)

E(v)(θ) = 0 (66)

to satisfy the constraint imposed by equation (65).
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6. Calculation of the Lyapunov exponent

We consider here the RBA and the SRTM with a degenerate exceptional energy. We
choose the first problem because the guest cluster has different hopping elements inside it.
On the other hand, the second problem allows us to investigate analytically the effect of a
degenerate exceptional energy onγ (E) and the IDOS.

6.1. The RBA

SinceTE−ε = eε d
dx TE , from equations (32) and (55) we obtain

γ1(E) = 1

6

∫ ∞

−∞
dx ln y(x)

d

dx
φ0

E(x) = 0 (67)

and

γ2(E) = 1

6

∫ ∞

−∞
dx ln y(x)

(
d

dx

)2

φ0
E(x) + 1

3

∫ ∞

−∞
dx ln y(x)

d

dx
T 2

Eφ1
E(x)

= 1

6π sin2 απ

∫ π/2

−π/2
dθ [ln | sinαπ | − ln | sinθ |](cos 2θ − cos 4θ)

− 1

3π | sinαπ |
∫ π/2

−π/2
dθ [ln | sinαπ | − ln | sinθ |] d

dθ
sin2 θτ 2

αh
(1)
E (θ)

= 1

12(4 − E2)
. (68)

So for this case we have

γ (ω + λ) ∼ λ2(1 − V 2
0 )2

24V 4
0 (4 − ω2)

+ O(λ3) (69)

when |ω| < 2.

6.2. The SRTM with degenerate exceptional energy

We define an operator,̃O(E, λ), which is the total operator operating onφE(v)(x) in
equation (33):

Õ(E, λ) = TλT−E+λf (E,λ)Tλ − TE − (1 − TE)T0[Tλ − T−E+λf (E,λ)Tλ] (70)

wheref (E, λ) = 2 − E2 + 2Eλ + λ2. To expandÕ(E, λ) aroundλ = 0, we write

Õ(E, λ) =
∞∑

n=0

λnOn(E). (71)

Now using the standard procedure, we obtain

O0(E) = 0 (72)

O1(E) = −
[

d

dx
(TE + T −1

E + (2 − E2)I

]
(73)

O2(E) = 1

2

(
d

dx

)2

[TE − T −1
E + (2 − E2)2I] − 2E

d

dx
+ (2 − E2)

d

dx

d

dx
x2

+2
√

1 − E2/4

π

d

dx

d

dx

1

φ0
E(x)

T −1
E . (74)
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From equations (33) and (66) we find that

γ1(E) = −4 − E2

6

∫ ∞

−∞
dx ln y(x)

d

dx
φ0

E(x) = 0 (75)

and

γ2(E) = 1

6
(2 − E2)2

∫ ∞

−∞
dx ln y(x)

(
d

dx

)2

φ0
E(x) − 2

3

∫ ∞

−∞
dx ln y(x)

d

dx
φ0

E(x)

+ (2 − E2)

3

∫ ∞

−∞
dx ln y(x)

d

dx

d

dx
x2φ0

E(x)

= (2 − E2)2

6π sin2 απ

∫ π/2

−π/2
dθ [ln | sinαπ | − ln | sinθ |](cos 2θ − cos 4θ)

+ (2 − E2)

3π | sinαπ |
∫ π/2

−π/2
dθ [ln | sinαπ | − ln | sinθ |]

×[cos 2(θ + απ) − cos(4θ + 2απ)]

= 0. (76)

Sinceγ2(v) = 0 for this case, in principle further calculation is needed to find the leading
non-zero term in the expansion ofγ (E). However, the leading term can be obtained through
a simple argument. For any arbitraryV0, the original system will yield two exceptional
energies,ES1 and ES2 provided |ESi

| 6 2 for i = 1, 2. If |v| 6 1, so thatV 2
0 is positive,

for ES2 to be the second exceptional energy we need

1 − |v|
1 + |v| 6 V 2

0 6 1 + |v|
1 − |v| . (77)

Now from equation (30) we find that

γ (ES2) = 1
6

∫ ∞

−∞
dx ln |x|[TES2−v + T −1

ES2−v]φ0
ES2

(x)

= 0. (78)

Furthermore,γ (v) = 0. Sinceγ (E) reaches the minimum value atv andES2, it must possess
a maximum in between these points. As we bringES2 towardsv by tuningV0, this maximum
also moves towardsv and the value ofγ (E) at the maximum simultaneously reduces. In the
limit when V 2

0 (1 − v2) = 1, two minima and a maximum merge atv. So it is an inflection

point of γ (E) and d2γ

dE2 |E=v should be zero. This is precisely obtained. Since for|v| < 2,
γ (v) must be a positive semidefinite quantity with the leading order term determining the
sign, d3γ

dE3 |E=v must be zero and we should haveγ (E) ∼ (E − v)4. This prediction can
be tested by rigorous calculation. We shall, however, present an alternative justification.
Since, around the exceptional energies, the system behaves like a weak disordered system,
around these energiesγ (E) ∼ |r(E)|2, when|r(E)|2 is the reflection coefficient of a simple
guest cluster in the host lattice [7]. For this system|r(E)|2 can be found in [7]. The Taylor
series expansion of|r(E)|2 aroundv for |v| < 2 yields

|r(E)|2 ∼ v2(1 − v2)2

(4 − v2)
(E − v)4 + O[(E − v)5] (79)

This is consistent with our arguments.
Before concluding this section we show that for the SRTM withV 2

0 = 1, u = 2v and
|v| < 1, γ1(v) andγ2(2v) are indeed zero. Consider first the case ofv. From equation (33)
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we obtain

γ1(E) = −1

6

∫ ∞

−∞
dx ln y(x)

d

dx
[T −1

E + TE + 2]φ0
E(x)

= −2

3

∫ ∞

−∞
dx ln y(x)

d

dx
φ0

E(x)

= 0. (80)

On the other hand for 2v, from equation (34) we obtain

γ1(E) = − 1

12

∫ ∞

−∞
dx ln y(x)

d

dx

[
T −1

E + TE + 2

(
E

2
− x

)2

TE

]
φ0

E(x)

+λ

6

∫ ∞

−∞
dx ln |x| d

dx
x2TE/2φ

0
E(x)

= − E2

24

∫ ∞

−∞
dx ln y(x)

d

dx
φ0

E(x) − 1

6

(
1 − E2

4

) ∫ ∞

−∞
dx ln |x| d

dx
TE/2φ

0
E(x)

= 0. (81)

This is so because both integrals involve an odd function ofx. Hence, aroundES = v and
2v, γ (E) ∼ γ2

2 (E − ES)
2. The direct calculation ofγ2 for these cases, albeit possible, is

however quite complicated. But as mentioned earlier, a good estimate ofγ2 can be obtained
from the reflection coefficient of the single guest cluster.

7. Density of states at the exceptional energy

7.1. The RBA

From equation (29) we get

N(E = ω + λ) = 1 −
∫ 0−

−∞
dx φ0

E(x)

−ε

3

∫ 0−

−∞
dx (I + TE + T 2

E)φ
(1)
E (x) − ε

6
φ0

E(0) + O(ε2). (82)

Again from the governing equation ofh(1)
E (θ), i.e. equation (54), we obtain

f̂E(θ) = (I + τα + τ 2
α )h

(1)
E (θ)

= − cos(2θ − απ)

4π sinαπ | sinαπ | . (83)

This equation, in turn, yields

f (x) = f̂E(θ)
dθ

dx
= E

8 sin2 απ(E2 − 1)
φ0

E(x) + 1

4(E2 − 1)

d

dx
φ0

E(x)

− Eπ

4| sinαπ |(E2 − 1)
80

E

2
(x). (84)

Required integrals for the calculation ofN(E) can be easily performed. The DOS atω,
ρ(ω) is

ρ(ω) = dN(E)

dE
|E=ω

= 1

π
√

4 − ω2
+ (1 − V 2

0 )

6V 2
0 π

√
4 − ω2

. (85)
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7.2. The SRTM with a degenerate exceptional energy

We have already shown in this caseφ̃
(1)
E (x) = 0. Furthermore, to obtain the DOS atE = v,

we need the coefficient of(E − v) = λ in the Taylor series expansion ofN(E). So, we
write from equation (29)

N0(E = v + λ) = 1 − 2
3

∫ 0−

−∞
φ0

E(x) dx − 1
6

∫ 0−

−∞
dx [TE−v + TE−u

V 2
0

TE−v]φ0
E(x)

= 1

2
+ 2

3π
tan−1 E√

4 − E2
+ 1

6π
tan−1 E − 2v√

4 − E2
+ 1

6π
tan−1 b(E)

a(E)
(86)

where

b(E) = E − u

V 2
0

− E − 2v

2(v2 − Ev + 1)

and

a(E) =
√

4 − E2

2(v2 − Ev + 1)
.

Now expandingN0(E) in the Taylor series aroundE = v, we get for the DOS,ρ(v)

ρ(v) = 1

π
√

4 − v2
− v2

6π
√

4 − v2
. (87)

We consider now the case of the SRTM whereV 2
0 = 1 andu = 2v, and |v| < 1. For

this case the DOS atE = v and 2v has been calculated numerically. We present here the
analytical results. We write for these cases

N(E = ES + λ) ≈ N0(E = ES + λ) + λ

6
N1(E = ES + λ) + O(λ2) (88)

whenN0(E = ES + λ) is obtained from equation (86).
Furthermore,

N1(E) =
∫ ∞

b(E)

dx fE(ES)(x) (89)

and b(E) = E and 0 forES = v and 2v, respectively.fE(ES) is given by equation (63).
After performing the required integral and combining the coefficient ofλ in the expansion
of N(E) we get

ρ(v) = 1

π
√

4 − v2
+ v2

4π
√

4 − v2
+ v2(1 − 2v2)

24π
√

4 − v2
(90)

and

ρ(2v) = 1

2π
√

1 − v2
− v2

12π
√

1 − v2
. (91)

Finally combining the results of the two sections we find that the number of states having
localization length superior to the sample size is∼ρ(ES)[ 2

Mγ2n(ES)
]1/2n, whereM is the size

of the sample.n denotes the degeneracy of the exceptional energy. Consequently, the mean
square displacement of an electron should go ast2γ with γ = (1 − 1

4n
). This prediction

matches very nicely with exponents obtained from numerical simulations [5, 11, 25].



A study of one-dimensional correlated disordered systems 5715

8. One-dimensional correlated disordered system as an effective Lloyd model

We have already proved that the invariant measureφ0
E(x) of the system at the exceptional

energies is a Lorentzian distribution centred atES/2 with a half-width
√

1 − E2
S/4. We

have also seen through examples that the DOS atES in the near-perfect limit to a good
approximation is the DOS of the perfect system. It is also a well established result that
the Lyapunov exponent,γ (E) aroundES can be approximated to a fair degree by|r(E)|2
where |r(E)|2 is the reflection coefficient of a single guest cluster in the host lattice and
|r(ES)|2 = 0.

The Lloyd model [26], on the other hand, is the uncorrelated site disordered Anderson
model where the probability distribution of the site energies{εn}, P(εn) is

P(εn) = 1

π

ε1

(εn − ε0)2 + ε2
1

. (92)

The invariant measureφE(x) for this model is

φE(x) = 1

π

ε∗
1

(x − ε∗
0)2 + ε∗

1
2 (93)

where

ε∗
0 = E

2
+ 1

2
Re

√
(E + iε1)2 − 4 = E

2

[
1 + ε̃1√

A

]
(94)

ε∗
1 =

√
4 − E2

2
+ [ε̃1 +

√
A] (95)

A =
1 + ε̃2

1 +
√

(1 + ε̃2
1)

2 + 4E2ε̃2
1

2
(96)

and

ε̃1 = ε1√
4 − E2

. (97)

We note that all nearest neighbour hopping matrices have been assumed to be unity. The
Lyapunov exponent and the DOS for this model can be found in the literature [19]. We
simply quote the results.

4 coshγ (e) = |2 + E|
[

1 + 2 − E

2 + E
ε̃2

1

]1/2

+ |2 − E|
[

1 + 2 + E

2 − E
ε̃2

1

]1/2

(98)

and

ρ(E) = 1

π
e2γ (E)

[
ε∗

1

dε∗
0

dE
− ε∗

0
dε∗

1

dE

]
. (99)

Now in the limit ε̃1 → 0, we find thatε∗
0(E) = E

2 , dε∗
0(E)

dE
= 1

2, ε∗
1(E) = 1

2

√
4 − E2 and

dε∗
1(E)

dE
= − E

2
√

4−E2 . Consequently, we obtain

φE(x) = 1

π

√
1 − E2/4

x2 − Ex + 1
(100)

γ (E) = 0 (101)

and

ρ(E) = 1

π
√

4 − E2
. (102)
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So, all the characteristic features of one-dimensional correlated disordered systems around
the exceptional energies are recovered. To develop an effective Lloyd model for one-
dimensional correlated disordered systems, we need thenε̃1 = f (E) such thatf (ES) = 0
for |ES | 6 2 andf (E) should also contain in it the information about the guest cluster. We
further note that for̃ε1 ∼ 0, equation (98) yieldsγ (E) ∼ |ε̃1|. But we have shown that for
a nondegenerate exceptional energy,γ (E) ∼ (E − ES)

2. So,f (E) should also satisfy this
condition. Inasmuch as|r(E)|2 satisfies all these criteria, we propose thatε̃1 = |r(E)|2.
This proposal in turn implies that

P(ε) = 1

π

√
4 − E2|r(E)|2

ε2 + (4 − E2)|r(E)|4 (103)

in the effective Lloyd model. Finally we note that many methods [9] are developed to study
the electrical conductivity of uncorrelated site disordered systems. So, these methods can
be applied to the systems considered here through the proposed mapping.

9. Summary

The behaviour of electronic states of one-dimensional correlated disordered systems around
exceptional energies (ES) is studied analytically using the invariant measure method. The
RDM is the simplest example in this category, and this has been studied by this method by
Bovier. The basic approach of Bovier is generalized thoroughly and rigorously to take into
consideration more structure in the guest cluster. The formalism is further elaborated by
applying to the SRTM. Another useful contribution is the alternative mathematical definition
of the exceptional energy from the invariant measure. This definition is further substantiated
by physical arguments. Furthermore, from our definition of exceptional energy we obtain
an equation constraining the parameters of the guest cluster. The same equation has also
been obtained by setting|r(E)|2 = 0. This clearly shows an intimate relationship between
the invariant measure and|r(E)|2. This relationship is further highlighted here by mapping
these systems to an effective Lloyd model. This equation further shows how the structure
of the guest cluster can be modulated to tune positions of exceptional energies. We also
obtain through it the condition for a degenerate exceptional energy. Hence, the importance
of the method is further illustrated.

In relation to the localization of the eigenstate we find as expectedγ (E) ∼ (E − ES)
2

for cases with a nondegenerate exceptional energy. In the case of a degenerate resonance,
γ2(ES) along with γ1(ES) are shown to be identically zero. These results are further
substantiated by rigorous analytical arguments. Further analytical arguments are presented
to show thatγ (E) ∼ (E − ES)

4 for this case. Although a system containing a degenerate
exceptional energy has been studied previously by us, this is, however, the most rigorous
analysis.

In the RDM ρ(v) is the DOS of the perfect system atE = v. Further structure in
the guest cluster is found to be manifested inρ(ES) through correction terms. However,
the universality in the mathematical expression ofN1(E) should not be overlooked. This
exemplifies further the universality of one-dimensional correlated disordered systems around
exceptional energies. We finally add that the real significance of our work along with that
of Bovier on the RDM is that this firmly establishes the anomalous behaviour of one-
dimensional correlated disordered systems around exceptional energies.
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